發(fā)布時間:2023-02-26 21:26:54 人氣:3811
合理的氣流組織是醫(yī)院潔凈手術(shù)室空調(diào)系統(tǒng)設計的重要內(nèi)容。文章以RNG?K-ε湍流雙方程模型為基礎,?采用CFD?技術(shù),?建立了相應的物理和數(shù)學模型,?對上送——相對單側(cè)墻底部回風潔凈手術(shù)室內(nèi)速度場進行了數(shù)值模擬,?得到了潔凈手術(shù)室內(nèi)工作面三維速度場與二維流場的分布。
潔凈手術(shù)室的空調(diào)設計最終目的是以經(jīng)濟可行的空調(diào)系統(tǒng)設計和合理的氣流組織,?維持手術(shù)室內(nèi)氣候環(huán)境(溫濕度、氣流及污染物濃度等的分布),?并除去空氣中的塵埃、微生物和有害氣體[ 1 , 2]?。為實現(xiàn)對這些環(huán)境參數(shù)的合理控制,?有必要采用CFD?技術(shù)對室內(nèi)氣流組織,?進行三維分析研究。隨著計算機技術(shù)、流體力學的發(fā)展,?計算流體力學(Computa?tional?Fluid?Dy?namics?,?簡稱CFD)已經(jīng)廣泛應用于熱能動力、土木水利、環(huán)境化工、暖通空調(diào)及空氣凈化等諸多工程領域[ 3 -5]?。
1? 數(shù)學物理模型
1. 1? 物理模型
千級潔凈手術(shù)室屬于非單向流潔凈室,?其工作原理是通過布置在手術(shù)室頂棚的潔凈送風單元,?向下吹出潔凈氣流,?利用潔凈的氣流稀釋手術(shù)室內(nèi)含塵濃度較高的空氣,?將等量的空氣從回風口排出。送風單元下的手術(shù)臺及周邊區(qū)域處于潔
凈氣流的主流區(qū),?潔凈度最高,?并且保持局部單向流[ 6]?。潔凈手術(shù)室面積(8?×4)m2?,?吊頂下高度3 m ,?潔凈等級為千級??照{(diào)氣流組織形式為頂送風單側(cè)下回風,?送風口尺寸為2 m?×1. 2 m ,?集中布置于手術(shù)臺上方。回風口為4?個,?尺寸為
0. 8 m?×0. 3 m?。回風口下沿距離地面0. 1 m ,?連續(xù)布置,?手術(shù)臺為1. 8 m?×0. 6 m?×0. 8 m?。
1. 2? 建立數(shù)學模型
1. 2. 1? 控制方程
潔凈手術(shù)室內(nèi)的空氣流動通常處于穩(wěn)態(tài)的湍流流動,?可以用不可壓縮流體的黏性流動控制微分方程來描述。暖通空調(diào)領域CFD?數(shù)值模擬常用K-ε兩方程模型,?其中K?為湍流動能,?ε為湍流耗散率。本文采用RNG K-ε雙方程模型,?它是對標準K-ε雙方程模型的改進。為簡化計算,?對RNG K-ε雙方程模型作如下假設:
(1)?氣流流動為穩(wěn)態(tài)湍流流動。
(2)?由于所研究的潔凈手術(shù)室內(nèi)空氣流速很小,?斷面風速小于0. 5 m / s ,?所以視手術(shù)室內(nèi)氣體為不可壓縮流動,?且符合Boussinesq假設[ 7]?,?即認為流體密度變化僅對浮升力產(chǎn)生影響。
(3)?室內(nèi)氣體屬于牛頓流體,?作定常流動。
(4)?不考慮漏風的影響,?即認為潔凈手術(shù)室內(nèi)氣密性良好。標準K-ε模型中,?湍流動能K?及其耗散率ε是未知量,?可從下面的輸運方程組得到
在RNG K-ε模型輸運方程中,?從控制方程中去除小尺度的運動,?得到的模型輸運方程與標準K-ε模型輸運方程有相似的形式[8]?,?即
其中
RNG K-ε模型與標準K-ε模型相比,?對于近壁轉(zhuǎn)角處流動特征的描述比標準模型更細致精確,?可以更好地處理高應變率及流線彎曲程度較大的流動[8]?。因此,?更適合模擬手術(shù)室內(nèi)這種高雷諾數(shù)的情形。
1. 2. 2? 計算區(qū)域與邊界條件
(1)?送風口邊界。假設入流速度在入口面上是均勻分布的。在本次模擬中,?由于手術(shù)室在幾何上的結(jié)構(gòu),?切向速度vx?=vy?=0 ,?只有法向速度存在。法向速度vz?為
vz?=ACH?V/3600S
其中,?ACH?為手術(shù)室換氣次數(shù)(次/h);V?為手術(shù)室體積(m3?);S?為送風口面積(m2?)。速度方向垂直向下, T =295 K?。
(2)?回風口邊界?;仫L口為4?個的方形口,假設每個回風口的回風量占總回風量的25 %,?回風口滿足充分發(fā)展段紊流出口模型。
(3)?壁面邊界。對于固定壁面邊界,?由于壁面的作用,?在離壁面很近的區(qū)域內(nèi)湍流的脈動影響不如分子黏性力起主要作用,?所以用壁面函數(shù)法[7]?處理近壁區(qū)域內(nèi)的紊流。
1. 2. 3? 網(wǎng)格生成
由于單獨建立了邊界層的數(shù)學模型,?在Fluent的前處理軟件(gambi?t)中對模型進行網(wǎng)格劃分,?采用了均勻劃分網(wǎng)格的方法,?控制體為非結(jié)構(gòu)正四面體,?邊長0. 15 m ,?此次模擬共生成22789個節(jié)點, 114 416?個網(wǎng)格。
2? 工作面速度計算結(jié)果與分析
2. 1? 不同送風速度下的工作面速度分布
模擬的潔凈手術(shù)室內(nèi)手術(shù)臺高度0. 8 m ,?手術(shù)臺之上的人體切口高度為0. 3 m ,?所以工作面高度設定為距離地面1. 1 m ,?位于xoy平面,?工作面面積為(1. 8?×0. 6) m2?。為獲得更準確的工作面風速值,?將工作面均勻劃分為(0. 15?×0. 15) m2的區(qū)域,?測速點為各區(qū)域節(jié)點,?共有65(13?×5)個測點,?如圖1?所示。
根據(jù)建立的手術(shù)室模型,?分別模擬計算了15?次/h?、20?次/h?、25?次/h?、30?次/h?、35?次/h?、40?次/h?、45?次/h?、50?次/h?不同換氣次數(shù)下空態(tài)工作面的風速。利用Fluent?的后處理功能獲得工作面的風速,?將所獲各測試點風速值由MA TLAB軟件進行三維可視化處理,?使工作面速度場更加形象直觀。
由于15?~?50?次/h?不同換氣次數(shù)下工作面風速三維分布圖形狀基本相同,?僅列出50?次/h?、35?次/h?、15?次/h?換氣次數(shù)下工作面風速三維分布圖,?如圖2?所示。圖中W?、L?分別表示工作面寬度、長度;v?表示工作面風速。
??
? ? ? ? ? ? ? ? ? ??
圖2? 工作面風速三維分布圖
從圖2a?~?圖2c?可以看出,?不同換氣次數(shù)下,工作面的速度場均呈現(xiàn)四周風速高于工作面中心區(qū)域風速,?成“漏斗狀”?。速度場四周呈“鋸齒狀”分布,?表明工作面邊緣風速分布不均勻,?模擬的潔凈手術(shù)室屬于亂流。如果工作面速度場的分布不均勻,?風速極大值與極小值之間相差較大,會造成工作面有明顯旋渦。因此,?有必要計算工作面的速度場的亂流度β,?亂流度β?愈小則表明速度分布愈均勻。綜合數(shù)值模擬結(jié)果,?其工作面風速及亂流度與不同換氣次數(shù)下對應的送風速度關系如圖3?所示,?圖3?中v送、v工分別表示送風速度和工作面的風速。
? ? ? ? ? ? ? ? ? ? ? ?
從圖3a?、3b?可以看出,?隨著換氣次數(shù)的增大,工作面風速的極大值與極小值之差也隨之增大,從0. 04 m / s?增加到0. 14 m / s?。15次/h?、20?次/h換氣次數(shù)下的亂流度β?分別是0. 167?、0. 22?。25?次/h?以上的換氣次數(shù)亂流度β?基本保持在0. 1?左右。15?次/h、20?次/h?換氣次數(shù)下的送風速度較小,?只有0. 17?~?0. 22 m / s ,?空氣流動動量較小,?速度衰減加快,?造成亂流度β?高于其他換氣次數(shù)下的亂流度。因此,?推薦25?次/h?換氣次數(shù)作為此類潔凈手術(shù)室的最小換氣次數(shù)。
2. 2? 工作面斷面流場分析
Fluent?的后處理功能可以將模擬結(jié)果以矢量圖、流線圖、等值線圖等形式輸出。在分析了工作面的三維速度場分布后,?有必要進一步分析工作面所在的斷面的流場,?選取具有代表的x =0 ,y-z?斷面的流場進行分析。由于15?~?50?次/h?不同換氣次數(shù)下斷面流場速度矢量圖形狀基本相同,?限于篇幅,?僅列出50?次/h?、35?次/h?、15?次/h換氣次數(shù)下斷面速度矢量圖,?如圖4?所示。
? ? ? ? ? ? ? ? ??
對圖4a?~?圖4c?分析,?可以看出:
(1)?整個斷面流場的分布呈主流區(qū)、渦流區(qū)和回風口區(qū)分布。從送風口垂直向下送出的氣流在手術(shù)臺上方基本保持垂直向下的流線,?使工作面處于主流區(qū)的保護之下。沿送風單元中心軸線,?手術(shù)臺上方區(qū)域流場呈對稱分布。由于是上送———相對單側(cè)墻底部回風,?在手術(shù)臺的左右兩側(cè)區(qū)域,?流線發(fā)生較大傾斜,?形成了三角形的渦流區(qū),?在靠近墻壁區(qū)域的渦流呈不對稱分布。由于受墻壁的限制,?流場右上方形成受限射流,?形成較大的旋渦。旋渦直徑在0. 5?~?0. 7 m ,?旋渦中心高度在2. 1?~?2. 3 m ,?順時針旋轉(zhuǎn)。在回風口附近,流線曲率變化加劇,?流速加大。
(2)?工作面上方空氣流線基本保持垂直,?與水平方向的傾斜角度大于65°,?按照文獻[9]?的研究結(jié)果,?潔凈室手術(shù)室內(nèi)人員產(chǎn)生的塵粒不會落在工作面上。在手術(shù)臺的邊緣,?由于手術(shù)臺的阻礙作用,?流線發(fā)生較大彎曲。因此,?工作面的速度場在四周呈“鋸齒狀”分布。
(3)?回風口與送風口之間的距離對潔凈手術(shù)室氣流流線影響不大。
3? 結(jié) 論
計算流體力學(CFD)技術(shù)在暖通空調(diào)行業(yè)的應用將越來越廣,?成為潔凈空調(diào)設計工程中不可缺少的工具之一。本文以基于RNG K-ε湍流雙方程模型為基礎,?通過數(shù)值模擬得到千級潔凈手術(shù)室工作面高度截面的三維速度場和二維室內(nèi)流場的分布,?工作面流場處于主流區(qū)且保持單向流。數(shù)值模擬結(jié)果表明:
(1)?換氣次數(shù)分別在15?~?25?次/h?、30?~?50次/h?之間,?工作面的平均風速在0. 1?~?0. 16 m /s?、0. 20?~?0. 33 m /s?之間。
(2) 15?次/h?、20?次/h?換氣次數(shù)下工作面的亂流度β?分別是0. 167?、0. 22?。25?次/h?以上的換氣次數(shù)亂流度β在0. 1?左右,?因此建議25?次/h?換氣次數(shù)作為千級潔凈手術(shù)室的最小換氣次數(shù)。